论文标题

DeepFakes演变:面部区域和虚假检测性能的分析

DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance

论文作者

Tolosana, Ruben, Romero-Tapiador, Sergio, Fierrez, Julian, Vera-Rodriguez, Ruben

论文摘要

在过去的几年中,媒体取证引起了很多关注,部分原因是深层摄影的担忧越来越多。由于最初的DeepFake数据库(例如UADFV和FaceForensics ++)一直到第二代的最新数据库,例如Celeb-DF和DFDC,因此已经进行了许多视觉改进,使虚假视频几乎与人眼无法区分。这项研究在面部区域和虚假检测性能方面对第一和第二层的几代人提供了详尽的分析。在我们的实验框架中考虑了两种不同的方法:i)文献中的传统框架,并基于选择整个面孔作为伪造检测系统的输入,ii)一种基于选择特定面部区域的新方法作为伪造检测系统的输入。 在我们实验所产生的所有发现中,我们重点介绍了第二代最新的DeepFake数据库中最先进的假探测器所取得的糟糕假探测结果,其错误率结果范围从15%到30%不等。这些结果指出了进一步研究以开发更复杂的假探测器的必要性。

Media forensics has attracted a lot of attention in the last years in part due to the increasing concerns around DeepFakes. Since the initial DeepFake databases from the 1st generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an exhaustive analysis of both 1st and 2nd DeepFake generations in terms of facial regions and fake detection performance. Two different methods are considered in our experimental framework: i) the traditional one followed in the literature and based on selecting the entire face as input to the fake detection system, and ii) a novel approach based on the selection of specific facial regions as input to the fake detection system. Among all the findings resulting from our experiments, we highlight the poor fake detection results achieved even by the strongest state-of-the-art fake detectors in the latest DeepFake databases of the 2nd generation, with Equal Error Rate results ranging from 15% to 30%. These results remark the necessity of further research to develop more sophisticated fake detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源