论文标题

基于深度学习的DENOISE网络,用于FDD大量MIMO系统中的CSI反馈

Deep Learning based Denoise Network for CSI Feedback in FDD Massive MIMO Systems

论文作者

Ye, Hongyuan, Gao, Feifei, Qian, Jing, Wang, Hao, Li, Geoffrey Ye

论文摘要

通道状态信息(CSI)反馈对于大量多输入多输出(MIMO)系统至关重要。大多数常规算法基于压缩感(CS),并且高度取决于通道稀疏度的水平。为了解决这个问题,最近的一种方法采用了深度学习(DL)将CSI压缩到具有低维度的代码字中,当反馈链接是完美的时,其性能比CS算法更好。但是,在实际情况下,存在各种干扰和非线性效应。在本文中,我们设计了一个基于DL的DeNoise网络,称为DNNET,以提高频道反馈的性能。数值结果表明,基于DL的反馈算法具有所提出的DNNET的性能优于现有算法,尤其是在低信噪比(SNR)时。

Channel state information (CSI) feedback is critical for frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems. Most conventional algorithms are based on compressive sensing (CS) and are highly dependent on the level of channel sparsity. To address the issue, a recent approach adopts deep learning (DL) to compress CSI into a codeword with low dimensionality, which has shown much better performance than the CS algorithms when feedback link is perfect. In practical scenario, however, there exists various interference and non-linear effect. In this article, we design a DL-based denoise network, called DNNet, to improve the performance of channel feedback. Numerical results show that the DL-based feedback algorithm with the proposed DNNet has superior performance over the existing algorithms, especially at low signal-to-noise ratio (SNR).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源