论文标题

数字全息图中的真实3D重建

True 3D reconstruction in digital holography

论文作者

Birdi, Jasleen, Sunaina, Butola, Mansi, Khare, Kedar

论文摘要

我们检查了从全息图记录平面到原始对象体积的对象波的重播(或背部传播)获得的3D图像的性质。虽然记录全息图涉及将信息从3D体积传输到2D检测器平面,但全息图的重播涉及从一组3D Voxels中创建信息的2D检测器像素,最初看起来似乎令人惊讶。我们指出,全息图的过程是全息图构造过程的遗传学转置(而非逆),因此仅提供与原始3D对象函数的近似值。鉴于对这种遗传性转置特性的了解,我们展示了人们如何通过正则化优化算法实现真实的3D图像重建。此处介绍的这种优化方法的数值插图显示,在弱散射近似下,原始对象的逐片层析成像3D重建。特别是,重建的3D图像字段在不存在原始对象的体voxel上具有接近零的数值。我们注意到,这种类型的3D图像重建无法通过传统的物理重播过程来实现。从这个意义上讲,数字全息图像重建的建议方法超出了数值模仿传统的基于电影的全息重播。重建方法可能会在许多数字全息成像系统中找到潜在的应用。

We examine the nature of the 3D image as obtained by replay (or back-propagation) of the object wave from the hologram recording plane to the original object volume. While recording of a hologram involves transferring information from a 3D volume to a 2D detector plane, the replay of the hologram involves creating information in a set of 3D voxels from a much smaller number of 2D detector pixels, which at first look appears to be surprising. We point out that the hologram replay process is a Hermitian transpose (and not inverse) of the hologram formation process and therefore only provides an approximation to the original 3D object function. With the knowledge of this Hermitian transpose property, we show how one may realize true 3D image reconstruction via a regularized optimization algorithm. The numerical illustrations of this optimization approach as presented here show excellent slice-by-slice tomographic 3D reconstruction of the original object under the weak scattering approximation. In particular, the reconstructed 3D image field has near-zero numerical values at voxels where the original object did not exist. We note that 3D image reconstruction of this kind cannot be achieved by the traditional physical replay process. In this sense the proposed methodology for digital holographic image reconstruction goes beyond numerically mimicking the traditional film based holographic replay. The reconstruction approach may find potential applications in a number of digital holographic imaging systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源