论文标题

基于液态机器设计的基于神经架构搜索的框架

A Neural Architecture Search based Framework for Liquid State Machine Design

论文作者

Tian, Shuo, Qu, Lianhua, Hu, Kai, Li, Nan, Wang, Lei, Xu, Weixia

论文摘要

液态状态机(LSM),也称为尖峰神经网络(SNN)的经常性版本,由于其高计算能力,大脑的生物学合理性,简单的结构和低训练的复杂性,它引起了极大的研究兴趣。通过探索网络体系结构和参数中的设计空间,最近的工作证明了提高复杂性低的LSM模型的准确性的巨大潜力。但是,这些作品基于手动定义的网络体系结构或预定义参数。考虑到大脑结构的多样性和独特性,应在最大的搜索空间中探索LSM模型的设计。在本文中,我们提出了一个基于神经体系结构搜索(NAS)框架,以探索以数据集为导向的LSM模型的体系结构和参数设计空间。为了处理指数增加的设计空间,我们对LSM进行了三步搜索,包括多液体体系结构搜索,神经元数量和参数搜索的变化,例如每种液体内的连接百分比和兴奋性神经元比。此外,我们建议使用模拟退火(SA)算法来实施三步启发式搜索。三个数据集,包括MNIST和NMNIST的图像数据集以及FSDD的语音数据集,用于测试我们提出的框架的有效性。仿真结果表明,我们提出的框架可以产生面向数据集的最佳LSM模型,其精度高且复杂性低。这三个数据集的最佳分类精度分别为93.2%,92.5%和84%,仅1000个尖峰神经元,与单个LSM相比,网络连接可以平均降低61.4%。此外,我们发现,最佳LSM模型中三个数据集中神经元的总数可以进一步降低20%,而精度损失仅为0.5%。

Liquid State Machine (LSM), also known as the recurrent version of Spiking Neural Networks (SNN), has attracted great research interests thanks to its high computational power, biological plausibility from the brain, simple structure and low training complexity. By exploring the design space in network architectures and parameters, recent works have demonstrated great potential for improving the accuracy of LSM model with low complexity. However, these works are based on manually-defined network architectures or predefined parameters. Considering the diversity and uniqueness of brain structure, the design of LSM model should be explored in the largest search space possible. In this paper, we propose a Neural Architecture Search (NAS) based framework to explore both architecture and parameter design space for automatic dataset-oriented LSM model. To handle the exponentially-increased design space, we adopt a three-step search for LSM, including multi-liquid architecture search, variation on the number of neurons and parameters search such as percentage connectivity and excitatory neuron ratio within each liquid. Besides, we propose to use Simulated Annealing (SA) algorithm to implement the three-step heuristic search. Three datasets, including image dataset of MNIST and NMNIST and speech dataset of FSDD, are used to test the effectiveness of our proposed framework. Simulation results show that our proposed framework can produce the dataset-oriented optimal LSM models with high accuracy and low complexity. The best classification accuracy on the three datasets is 93.2%, 92.5% and 84% respectively with only 1000 spiking neurons, and the network connections can be averagely reduced by 61.4% compared with a single LSM. Moreover, we find that the total quantity of neurons in optimal LSM models on three datasets can be further reduced by 20% with only about 0.5% accuracy loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源