论文标题

Allovera:一个多语言的Allophone数据库

AlloVera: A Multilingual Allophone Database

论文作者

Mortensen, David R., Li, Xinjian, Littell, Patrick, Michaud, Alexis, Rijhwani, Shruti, Anastasopoulos, Antonios, Black, Alan W., Metze, Florian, Neubig, Graham

论文摘要

我们介绍了一种新资源Allovera,该资源提供了从218种Allophone到14种语言的音素的映射。音素是对比度的语音单元,同词是它们的各种具体实现,可以从语音环境中预测。虽然语音表示是特定于语言的,但语音表示(用(Allo)手机表示)更接近通用(与语言无关)的转录。 Allovera允许培训语音识别模型,无论输入语言如何,无论输入语言如何,在国际语音字母(IPA)中输出语音转录。我们表明,使用Allovera构建的“通用”同系模型Allosaurus在语音转录任务上优于“通用”音素模型和特定于语言的模型。我们探讨了该技术(及相关技术)对濒危和少数族裔语言的文献的含义。我们进一步探讨了Allovera随着其成长而适合的其他应用,包括语音类型。

We introduce a new resource, AlloVera, which provides mappings from 218 allophones to phonemes for 14 languages. Phonemes are contrastive phonological units, and allophones are their various concrete realizations, which are predictable from phonological context. While phonemic representations are language specific, phonetic representations (stated in terms of (allo)phones) are much closer to a universal (language-independent) transcription. AlloVera allows the training of speech recognition models that output phonetic transcriptions in the International Phonetic Alphabet (IPA), regardless of the input language. We show that a "universal" allophone model, Allosaurus, built with AlloVera, outperforms "universal" phonemic models and language-specific models on a speech-transcription task. We explore the implications of this technology (and related technologies) for the documentation of endangered and minority languages. We further explore other applications for which AlloVera will be suitable as it grows, including phonological typology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源