论文标题

使用图形神经网络转移学习,以预测短期高速公路流量

Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting

论文作者

Mallick, Tanwi, Balaprakash, Prasanna, Rask, Eric, Macfarlane, Jane

论文摘要

公路交通建模和预测方法对于智能运输系统至关重要。最近,基于深度学习的流量预测方法已成为各种流量预测任务的最新技术。但是,这些方法需要大量的培训数据,这些数据需要在很长一段时间内收集。对于缺乏历史数据的高速公路网络的开发和部署数据驱动的学习方法,这可能会带来许多挑战。解决此问题的一种有希望的方法是转移学习,在该学习中,可以在高速公路网络的一部分上训练的模型适用于高速公路网络的不同部分。我们专注于扩散卷积复发性神经网络(DCRNN),这是一种用于高速公路网络预测的最新图形神经网络。它使用基于图的扩散卷积操作在复发性神经网络中对高速公路网络的复杂空间和时间动力学进行了建模。但是,DCRNN无法执行转移学习,因为它学习了特定于位置的流量模式,该模式无法用于网络的看不见区域。为此,我们为DCRNN开发了一种新的转移学习方法,在该方法中,在高速公路网络的数据丰富区域进行培训的单个模型可用于预测高速公路网络未见区域的流量。我们通过一年的时间序列数据评估了我们的方法能够预测整个加利福尼亚高速公路网络流量的能力。我们表明,TL-DCRNN可以从加利福尼亚高速公路网络的多个地区学习,并以高度准确地预测网络看不见地区的流量。此外,我们证明TL-DCRNN可以从旧金山地区的交通数据中学习,并可以预测洛杉矶地区的流量,反之亦然。

Highway traffic modeling and forecasting approaches are critical for intelligent transportation systems. Recently, deep-learning-based traffic forecasting methods have emerged as state of the art for a wide range of traffic forecasting tasks. However, these methods require a large amount of training data, which needs to be collected over a significant period of time. This can present a number of challenges for the development and deployment of data-driven learning methods for highway networks that suffer from lack of historical data. A promising approach to address this issue is transfer learning, where a model trained on one part of the highway network can be adapted for a different part of the highway network. We focus on diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art graph neural network for highway network forecasting. It models the complex spatial and temporal dynamics of the highway network using a graph-based diffusion convolution operation within a recurrent neural network. DCRNN cannot perform transfer learning, however, because it learns location-specific traffic patterns, which cannot be used for unseen regions of the network. To that end, we develop a new transfer learning approach for DCRNN, where a single model trained on data-rich regions of the highway network can be used to forecast traffic on unseen regions of the highway network. We evaluate the ability of our approach to forecast the traffic on the entire California highway network with one year of time series data. We show that TL-DCRNN can learn from several regions of the California highway network and forecast the traffic on the unseen regions of the network with high accuracy. Moreover, we demonstrate that TL-DCRNN can learn from San Francisco region traffic data and can forecast traffic on the Los Angeles region and vice versa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源