论文标题
在离散空间中通过对抗性不确定性采样的主动句子学习
Active Sentence Learning by Adversarial Uncertainty Sampling in Discrete Space
论文作者
论文摘要
句子理解的积极学习旨在发现注释的无标记数据,从而减少对标记数据的需求。我们认为,主动学习的典型不确定性抽样方法是耗时的,几乎无法实时工作,这可能导致样本选择无效。我们建议在离散空间(AUSD)中对对抗性不确定性采样,以更有效地检索信息性的未标记样品。 AUSDS将句子映射到由流行的预训练的语言模型产生的潜在空间中,并通过对抗性攻击发现信息无标记的文本样本。与传统的不确定性取样相比,提出的方法非常有效,超过10倍。五个数据集的实验结果表明,AUSD在有效性方面的表现优于强大的基准。
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.