论文标题
一阶修正性
On first order amenability
论文作者
论文摘要
我们介绍了一阶修正性的概念,作为一阶理论的属性$ t $:$ \ emptyset $上的每种完整类型,可能无限很多变量,都扩展到相同变量中的自动形态不变的全球keisler量度。 $ t $的不合适性来自所有足够大的$ \ aleph_ {0} $的(拓扑)组$ aut(m)$的均等性 - 同质可计可数$ m $ $ t $ $ t $(假设$ t $可计划),但限制性较小。 首先,我们研究了适合理论的基本特性,给出了许多等效条件。然后,通过[不理性,连接的组件和可确定的动作应用稳定器定理的版本; E. Hrushovski,K。Krupiński,A。Pillay],我们证明,如果$ t $是适合的,那么$ t $是G-Compact,即lascar strong类型,而Kim-Pillay类型强,而不是$ \ kermetyset $ comciend。这扩展并从本质上概括了通过不同的方法证明的类似结果,以$ω$ - 分类理论[amenability,notable oftable组和自动形态群体; K.Krupiński,A。Pillay]。在特殊情况下,当$ \ emptySet $ - 可定义的全球keisler措施(例如,适合$ω$ - $分类理论的情况)见证了不适当的性能时,我们还基于连续逻辑的稳定性给出了不同的证明。 极端舒适性的概念可行(但更容易)的结果。
We introduce the notion of first order amenability, as a property of a first order theory $T$: every complete type over $\emptyset$, in possibly infinitely many variables, extends to an automorphism-invariant global Keisler measure in the same variables. Amenability of $T$ follows from amenability of the (topological) group $Aut(M)$ for all sufficiently large $\aleph_{0}$-homogeneous countable models $M$ of $T$ (assuming $T$ to be countable), but is radically less restrictive. First, we study basic properties of amenable theories, giving many equivalent conditions. Then, applying a version of the stabilizer theorem from [Amenability, connected components, and definable actions; E. Hrushovski, K. Krupiński, A. Pillay], we prove that if $T$ is amenable, then $T$ is G-compact, namely Lascar strong types and Kim-Pillay strong types over $\emptyset$ coincide. This extends and essentially generalizes a similar result proved via different methods for $ω$-categorical theories in [Amenability, definable groups, and automorphism groups; K. Krupiński, A. Pillay] . In the special case when amenability is witnessed by $\emptyset$-definable global Keisler measures (which is for example the case for amenable $ω$-categorical theories), we also give a different proof, based on stability in continuous logic. Parallel (but easier) results hold for the notion of extreme amenability.