论文标题
远程经验协调
Remote Empirical Coordination
论文作者
论文摘要
我们将不完美的经验协调的框架应用于两个节点设置,在两个节点设置中,没有直接观察到第一个节点的$ x $,而是通过观察到独立损害的测量$ \ hat x $的$ l $ agents。这些$ l $ $代理使用所有人都可以使用的利率有限的通信,可以帮助第二个节点生成操作$ y $,以建立所需的协调行为。当$ l <\ infty $时,我们证明这足以$ r_i \ geq i \ weft(\ hat x; hat x; \ hat {y} \ right)$,至少为一个代理,而对于$ l \ longrightArrow \ infty $,我们表明,它足以$ r_i \ e \ geq i \ hat y $ hat y $ \ hat y $ \ hat y $ \ hat y $ x \ y $ x \ y $ x;一个随机变量,以至于$ x- \ hat x- \ hat y $和$ \ | p_ {x,x,\ hat y} \ left(x,x,y \ right)-p_ {x,y} \ left(x,x,y \ rigr)
We apply the framework of imperfect empirical coordination to a two-node setup where the action $X$ of the first node is not observed directly but via $L$ agents who observe independently impaired measurements $\hat X$ of the action. These $L$ agents, using a rate-limited communication that is available to all of them, help the second node to generate the action $Y$ in order to establish the desired coordinated behaviour. When $L<\infty$, we prove that it suffices $R_i\geq I\left(\hat X;\hat{Y}\right)$ for at least one agent whereas for $L\longrightarrow\infty$, we show that it suffices $R_i\geq I\left(\hat X;\hat Y|X\right)$ for all agents where $\hat Y$ is a random variable such that $X-\hat X-\hat Y$ and $\|p_{X,\hat Y}\left(x,y\right)-p_{X,Y}\left(x,y\right)\|_{TV}\leq Δ$ ( $Δ$ is the pre-specified fidelity).