论文标题
量子链中的动态结晶
Dynamic crystallization in a quantum Ising chain
论文作者
论文摘要
横向场中的基态拓扑变性不能通过局部扰动来消除,并使其成为拓扑计算的有前途的候选者。我们研究了Ising链中差的基态的结晶和溶解的动态过程。为此,采用了真实空间的重生方法来建立有效的哈密顿量,该方法捕获了给定系统的低能物理学。我们表明,可以通过添加绝热旋转的旋转,反之亦然,从$ n $ site One的一个链条中生成$ \左(n+1 \右)$ site链的基态和首先兴奋的状态。数值模拟表明,有限大小链的稳健准代环境基态可以通过一组非互动的旋转来制备高保真度。作为一种应用,我们提出了一对旋转和两个可分离的Ising链之间的纠缠转移方案,作为宏观拓扑量子。
The topological degeneracy of ground states in transverse field Ising chain cannot be removed by local perturbation and allows it to be a promising candidate for topological computation. We study the dynamic processes of crystallization and dissolution for the gapped ground states in an Ising chain. For this purpose, the real-space renormalization method is employed to build an effective Hamiltonian that captures the low-energy physics of a given system. We show that the ground state and the first-excited state of an $ \left( N+1\right) $-site chain can be generated from that of the $N$-site one by adding a spin adiabatically and vice versa. Numerical simulation shows that the robust quasidegenerate ground states of finite-size chain can be prepared with high fidelity from a set of noninteracting spins by a quasiadiabatic process. As an application, we propose a scheme for entanglement transfer between a pair of spins and two separable Ising chains as macroscopic topological qubits.