论文标题
多发性硬化病变活性分段的4D深度学习
4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation
论文作者
论文摘要
多发性硬化病变活性分割是检测基线和后续大脑MRI扫描之间出现的新的和扩大病变的任务。虽然对单扫描病变细分的深度学习方法很常见,但最近才提出了有关病变活动的深度学习方法。在这里,两个路径体系结构从两个时间点开始处理两个3D MRI量。在这项工作中,我们研究了使用MRI量的历史将此问题扩展到完整的4D深度学习,因此扩展基线可以提高性能。为此,我们设计了用于处理4D数据的经常性多编码器架构。我们发现,添加更多的时间信息是有益的,我们提出的体系结构以先前的方法优于先前的方法,而在病变的假阳性率为0.19的情况下,病变的真实正率为0.84。
Multiple sclerosis lesion activity segmentation is the task of detecting new and enlarging lesions that appeared between a baseline and a follow-up brain MRI scan. While deep learning methods for single-scan lesion segmentation are common, deep learning approaches for lesion activity have only been proposed recently. Here, a two-path architecture processes two 3D MRI volumes from two time points. In this work, we investigate whether extending this problem to full 4D deep learning using a history of MRI volumes and thus an extended baseline can improve performance. For this purpose, we design a recurrent multi-encoder-decoder architecture for processing 4D data. We find that adding more temporal information is beneficial and our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.