论文标题

Chern类别的偏光流和NEF矢量束的不平等现象

Chern class inequalities on polarized manifolds and nef vector bundles

论文作者

Li, Ping, Zheng, Fangyang

论文摘要

本文涉及Chern类和Chern数量的不平等现象和NEF矢量束。对于一对两对$(m,l)的$,$ l $非常丰富,我们的第一个主要结果是一个尖锐的Chern类不平等的家庭。其中第一个是经典结果的变体,第二个结果的平等案例是超出表面的表征。第二个主要结果是其上的Chern数字不平等,其中包括反向Miyaoka-yau类型的不等式。第三个主要结果是,紧凑型kähler歧管上的nef矢量束的Chern数在下面由Euler编号界定。作为一种应用,我们将紧凑型kähler歧管分类为非负性弯曲曲率,其Chern数字都是阳性的。提出了与带有非阳性双向曲率的紧凑型kähler歧管数量有关的猜想,这可以看作是与Hopf猜想的复杂类似物。

This article is concerned with Chern class and Chern number inequalities on polarized manifolds and nef vector bundles. For a polarized pair $(M,L)$ with $L$ very ample, our first main result is a family of sharp Chern class inequalities. Among them the first one is a variant of a classical result and the equality case of the second one is a characterization of hypersurfaces. The second main result is a Chern number inequality on it, which includes a reverse Miyaoka-Yau type inequality. The third main result is that the Chern numbers of a nef vector bundle over a compact Kähler manifold are bounded below by the Euler number. As an application, we classify compact Kähler manifolds with nonnegative bisectional curvature whose Chern numbers are all positive. A conjecture related to the Euler number of compact Kähler manifolds with nonpositive bisectional curvature is proposed, which can be regarded as a complex analogue to the Hopf conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源