论文标题

检测宇宙网络:从z = 3处的模拟细丝中的lyα发射

Detecting the Cosmic Web: Lyα Emission from Simulated Filaments at z=3

论文作者

Elias, Lydia M., Genel, Shy, Sternberg, Amiel, Devriendt, Julien, Slyz, Adrianne, Visbal, Eli, Bouché, Nicolas

论文摘要

标准宇宙学模型($λ$ CDM)预测了宇宙网络的存在:物质分布到连接大量光环的薄片和细丝中。但是,由于细丝的表面亮度低,观察性证据是难以捉摸的。最近的深层缪斯/VLT数据和即将进行的观察结果为$α$检测提供了有希望的途径,激发了现代理论预测的发展。我们使用使用AREPO代码运行的流体动力学宇宙学模拟来研究大型细丝的潜在可检测性,不包括嵌入其中的晕孔的贡献。我们专注于连接大规模的细丝($ M_ {200C} \ SIM(1-3)\ TIMES10^{12} M_ \ ODOT $)在z = 3处,并比较不同的模拟分辨率,反馈水平和模拟图像像素大小。我们发现,尽管内部细丝结构的固有增强,我们发现增加的模拟分辨率并不能基本上提高可检测性。相比之下,与没有反馈的仿真相比,在包括反馈的缪斯集成31小时(包括反馈)平均增加了$ \ simeq $ 5.5倍,这意味着即使是细丝的非结合组件也对反馈也具有很大的敏感性。将图像分辨率从(0.2“)$^2 $(5.3”)$^2 $孔径降低到(0.2英寸)$^2 $具有最强的效果,将可检测区域的中位数增加到$ \ simeq $ 200,并且当像素的大小大致与纤维的大小相匹配时,最有效。最后,我们发现大多数$ al $α$排放是由于电子冲击碰撞激发而不是辐射重组。

The standard cosmological model ($Λ$CDM) predicts the existence of the cosmic web: a distribution of matter into sheets and filaments connecting massive halos. However, observational evidence has been elusive due to the low surface brightness of the filaments. Recent deep MUSE/VLT data and upcoming observations offer a promising avenue for Ly$α$ detection, motivating the development of modern theoretical predictions. We use hydrodynamical cosmological simulations run with the AREPO code to investigate the potential detectability of large-scale filaments, excluding contributions from the halos embedded in them. We focus on filaments connecting massive ($M_{200c}\sim(1-3)\times10^{12} M_\odot$) halos at z=3, and compare different simulation resolutions, feedback levels, and mock-image pixel sizes. We find increasing simulation resolution does not substantially improve detectability notwithstanding the intrinsic enhancement of internal filament structure. By contrast, for a MUSE integration of 31 hours, including feedback increases the detectable area by a factor of $\simeq$5.5 on average compared with simulations without feedback, implying that even the non-bound components of the filaments have substantial sensitivity to feedback. Degrading the image resolution from the native MUSE scale of (0.2")$^2$ per pixel to (5.3")$^2$ apertures has the strongest effect, increasing the detectable area by a median factor of $\simeq$200 and is most effective when the size of the pixel roughly matches the width of the filament. Finally, we find the majority of Ly$α$ emission is due to electron impact collisional excitations, as opposed to radiative recombination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源