论文标题

使用log-koopman非线性图傅立叶变换的网络动力学采样和推理

Sampling and Inference of Networked Dynamics using Log-Koopman Nonlinear Graph Fourier Transform

论文作者

Wei, Zhuangkun, Li, Bin, Sun, Chengyao, Guo, Weisi

论文摘要

网络非线性动力学基于许多工程,社会,生物学和生态系统的复杂功能。通过节点的最小子集监测网络动力学对于各种科学和操作目的至关重要。当缺乏明确的模型和网络信号空间时,传统的进化分析和非凸方法不足。一个重要的数据驱动的最新方法使用Koopman操作员为原始状态空间可观察到的向量值生成线性进化模型。结果,可以通过可观察到的线性演化属性得出采样策略。但是,当前的多项式koopman操作员由于以下原因而导致了很大的采样空间:(i)基于多项式的可观测值($ o(n^2)$,$ n $,网络中的节点数),以及(ii)观察力之间的非线性依赖性中不考虑不考虑。 在这项工作中,为了实现线性缩放($ o(n)$)和一小部分采样节点,我们建议将新颖的log-koopman操作员和非线性图傅立叶变换(NL-GFT)方案相结合。首先,Log-Koopman运算符能够通过将可观察的乘法可观察到对数求和来减小可观察到的大小。其次,提供了非线性GFT概念和抽样理论,以利用可观察到的库普曼线性化进化分析的非线性依赖性。在两个既定的应用领域设计和演示了合并的采样和重建算法。结果表明,与最先进的多项式的Koopman线性进化分析相比,使用$ o(n)$可观察到的未知的非线性动力学可以(i)实现较低的采样节点。

Networked nonlinear dynamics underpin the complex functionality of many engineering, social, biological, and ecological systems. Monitoring the networked dynamics via the minimum subset of nodes is essential for a variety of scientific and operational purposes. When there is a lack of a explicit model and networked signal space, traditional evolution analysis and non-convex methods are insufficient. An important data-driven state-of-the-art method use the Koopman operator to generate a linear evolution model for a vector-valued observable of original state-space. As a result, one can derive a sampling strategy via the linear evolution property of observable. However, current polynomial Koopman operators result in a large sampling space due to: (i) the large size of polynomial based observables ($O(N^2)$, $N$ number of nodes in network), and (ii) not factoring in the nonlinear dependency between observables. In this work, to achieve linear scaling ($O(N)$) and a small set of sampling nodes, we propose to combine a novel Log-Koopman operator and nonlinear Graph Fourier Transform (NL-GFT) scheme. First, the Log-Koopman operator is able to reduce the size of observables by transforming multiplicative poly-observable to logarithm summation. Second, a nonlinear GFT concept and sampling theory are provided to exploit the nonlinear dependence of observables for Koopman linearized evolution analysis. Combined, the sampling and reconstruction algorithms are designed and demonstrated on two established application areas. The results demonstrate that the proposed Log-Koopman NL-GFT scheme can (i) linearize unknown nonlinear dynamics using $O(N)$ observables, and (ii) achieve lower number of sampling nodes, compared with the state-of-the art polynomial Koopman linear evolution analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源