论文标题
$ ade $ Quivers和Argyres-Douglas理论超过$ ADE镜子对称性
Three Dimensional Mirror Symmetry beyond $ADE$ quivers and Argyres-Douglas theories
论文作者
论文摘要
镜面对称性是三维$ \ mathcal {n} = 4 $ ir二重性,已详细研究了$ ade $ -type(以及其仿射版本)的Quiver仪表理论。 $ type Quivers(也称为Linear Quivers)和相关的镜子二元性在D3-D5-NS5-branes类型的IIB系统方面具有特别简单的实现。在本文中,我们提出了一种系统的现场理论,用于构建$ ade $ QUIVER量规理论以外的3D镜对,从一对$ a $ type Quivers和单一量规组开始。该结构涉及$ s $和$ t $操作的一定概括,这是在$ sl(2,\ mathbb {z})$ Action的上下文中出现的3D CFT上的,带有$ u(1)$ 0 $ 0型全局对称性。我们用两个超对称可观察到的构造实施了这一构造 - 圆形球体分区功能和$ s^2 \ times s^1 $的超符号索引。我们讨论了可以以这种方式获得的各种(非$ ade $)无限镜对家庭的明确例子。此外,我们使用上述构造来猜测3D $ \ Mathcal {n} = 4 $ lagrangians用于3D SCFT,这是在某些Argyres-Douglas理论的深度IR限制中产生的。
Mirror symmetry, a three dimensional $\mathcal{N}=4$ IR duality, has been studied in detail for quiver gauge theories of the $ADE$-type (as well as their affine versions) with unitary gauge groups. The $A$-type quivers (also known as linear quivers) and the associated mirror dualities have a particularly simple realization in terms of a Type IIB system of D3-D5-NS5-branes. In this paper, we present a systematic field theory prescription for constructing 3d mirror pairs beyond the $ADE$ quiver gauge theories, starting from a dual pair of $A$-type quivers with unitary gauge groups. The construction involves a certain generalization of the $S$ and the $T$ operations, which arise in the context of the $SL(2,\mathbb{Z})$ action on a 3d CFT with a $U(1)$ 0-form global symmetry. We implement this construction in terms of two supersymmetric observables -- the round sphere partition function and the superconformal index on $S^2 \times S^1$. We discuss explicit examples of various (non-$ADE$) infinite families of mirror pairs that can be obtained in this fashion. In addition, we use the above construction to conjecture explicit 3d $\mathcal{N}=4$ Lagrangians for 3d SCFTs, which arise in the deep IR limit of certain Argyres-Douglas theories compactified on a circle.