论文标题

外部谐波潜力中的LévyWalk Dynamics

Lévy walk dynamics in an external harmonic potential

论文作者

Xu, Pengbo, Zhou, Tian, Metzler, Ralf, Deng, Weihua

论文摘要

LévyWalks(LWS)是空间耦合的随机步行过程,描述了固体中的超级散热热传导,无序光学材料中光的传播,活细胞中分子电动机的运动或动物,人类,机器人和病毒的运动。我们在这里研究了LWS的关键特征,它们对外部谐波潜力的反应。在这种限制运动的通用环境中,我们证明了LWS呈指数型,并且可以假设双峰固定分布。我们还表明,与相关的超级延伸过程相比,固定分布在位于原点的反射边界旁边具有水平斜率。我们的结果将LW概括为限制力量,并解决LW周围的一些长期存在的难题。

Lévy walks (LWs) are spatiotemporally coupled random-walk processes describing superdiffusive heat conduction in solids, propagation of light in disordered optical materials, motion of molecular motors in living cells, or motion of animals, humans, robots, and viruses. We here investigate a key feature of LWs, their response to an external harmonic potential. In this generic setting for confined motion we demonstrate that LWs equilibrate exponentially and may assume a bimodal stationary distribution. We also show that the stationary distribution has a horizontal slope next to a reflecting boundary placed at the origin, in contrast to correlated superdiffusive processes. Our results generalize LWs to confining forces and settle some long-standing puzzles around LWs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源