论文标题

无界Toeplitz操作员的内核和符号的分解

Kernels of unbounded Toeplitz operators and factorization of symbols

论文作者

Câmara, M. Cristina, Malheiro, M. Teresa, Partington, Jonathan R.

论文摘要

我们考虑了$ h^p(\ mathbb c^+)$在其符号的分解方面,在$ h^p(\ mathbb c^+)中考虑了无限的toeplitz运算符的内核。我们研究了在$ h^p(\ mathbb c^+)$中包含一个给定功能的最小toeplitz内核的存在,我们描述了toeplitz运算符的内核,其符号具有一个涉及两个不同耐力空间的符号的符号,并且我们在两个因子$ nnon-nim nime cirdiles nit cirdiles中,我们在两个操作员之间建立了两个操作员之间的关系。我们应用结果来描述具有非变化分段连续符号的Toeplitz运算符的内核。

We consider kernels of unbounded Toeplitz operators in $H^p(\mathbb C^+)$ in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in $H^p(\mathbb C^+)$, we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of $z$. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源