论文标题
在手性磁性固体的螺旋和圆锥形背景中的Hopf孤子
Hopf solitons in helical and conical backgrounds of chiral magnetic solids
论文作者
论文摘要
三维拓扑孤子对从粒子物理学到宇宙学的田地引起了极大的兴趣,但在固态磁铁中仍然难以捉摸。在这里,我们在数值上预测了磁性Heliknotons,这是该非零-HOPF索引孤子子的实施例,嵌入了手性磁体的螺旋或圆锥形背景中。我们描述了heliknotons在经过广泛研究的材料中具有引人入胜的磁化场结构的亚稳态或地面局部非构造结构的条件。我们展示了此类孤子的三维空间位置的磁控制,并显示了它们如何相互作用以形成类似分子的簇,甚至可能与晶体相结合的晶体相结晶相,这些阶段构成了这些孤子的三维晶格,并具有定向和位置序列。最后,我们讨论了磁性Heliknotons的基本重要性和潜在的技术实用性。
Three-dimensional topological solitons attract a great deal of interest in fields ranging from particle physics to cosmology but remain experimentally elusive in solid-state magnets. Here we numerically predict magnetic heliknotons, an embodiment of such nonzero-Hopf-index solitons localized in all spatial dimensions while embedded in a helical or conical background of chiral magnets. We describe conditions under which heliknotons emerge as metastable or ground-state localized nonsingular structures with fascinating knots of magnetization field in widely studied materials. We demonstrate magnetic control of three-dimensional spatial positions of such solitons, as well as show how they interact to form molecule-like clusters and possibly even crystalline phases comprising three-dimensional lattices of such solitons with both orientational and positional order. Finally, we discuss both fundamental importance and potential technological utility of magnetic heliknotons.