论文标题

掺杂的狄拉克材料中渗透散射对超导性的影响

The effect of interorbital scattering on superconductivity in doped Dirac materials

论文作者

Dentelski, David, Kozii, Vladyslav, Ruhman, Jonathan

论文摘要

在多种掺杂材料中发现了非常规的超导性,包括拓扑绝缘子,半法和扭曲的双层。这些系统的统一特性是强轨道杂交,涉及与非平凡的Bloch波函数配对的状态。与幼稚的预期相反,这些超导体中的许多对疾病相对弹性。在这里,我们研究了通用障碍对掺杂的3D Dirac系统超导性的影响,该系统是范围内跨点附近分散的范式示例。我们认为,由于强大的轨道杂交,自然存在轨道间散射过程,必须考虑到。我们使用Abrikosov-Gor'kov理论计算各种配对状态和散射通道的临界温度的降低。这样,疾病的作用是由单个参数$γ$(对散射率)捕获的。此过程非常笼统,可以很容易地应用于不同的带结构和无序配置。我们的结果表明,内膜间散射对超导性具有显着影响,在不同的配对状态的鲁棒性高度取决于不同内膜间散射通道的相对强度。我们的分析还揭示了类似于安德森定理的保护,即奇数配对状态,总角度零(超级氟$^3 $ HE)。这个奇怪的状态是$ \ Mathcal {ct} $对称(而不是标准安德森理论中的$ \ Mathcal {t} $对称),其中$ \ MATHCAL {C} $和$ \ MATHCAL {T} $分别为chiral and-time-cretermetaliese。结果,它可以保护任何尊重$ \ Mathcal {ct} $对称性的疾病潜力,其中包括一个时间反转(磁性)杂质的家族。

Unconventional superconductivity has been discovered in a variety of doped materials, including topological insulators, semimetals and twisted bilayers. A unifying property of these systems is strong orbital hybridization, which involves pairing of states with non-trivial Bloch wave functions. In contrast to naive expectation, many of these superconductors are relatively resilient to disorder. Here we study the effects of a generic disorder on superconductivity in doped 3D Dirac systems, which serve as a paradigmatic example for the dispersion near a band crossing point. We argue that due to strong orbital hybridization, interorbital scattering processes are naturally present and must be taken into account. We calculate the reduction of the critical temperature for a variety of pairing states and scattering channels using Abrikosov-Gor'kov theory. In that way, the role of disorder is captured by a single parameter $Γ$, the pair scattering rate. This procedure is very general and can be readily applied to different band structures and disorder configurations. Our results show that interorbital scattering has a significant effect on superconductivity, where the robustness of different pairing states highly depends on the relative strength of the different interorbital scattering channels. Our analysis also reveals a protection, analogous to the Anderson's theorem, of the odd-parity pairing state with total angular momentum zero (the B-phase of superfluid $^3$He). This odd-pairty state is a singlet of partners under $\mathcal{CT}$ symmetry (rather than $\mathcal{T}$ symmetry in the standard Anderson's theory), where $\mathcal{C}$ and $\mathcal{T}$ are chiral and time-reversal symmetries, respectively. As a result, it is protected against any disorder potential that respects $\mathcal{CT}$ symmetry, which includes a family of time-reversal odd (magnetic) impurities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源