论文标题

任何分辨率和对比度的大脑MRI扫描的部分体积分割

Partial Volume Segmentation of Brain MRI Scans of any Resolution and Contrast

论文作者

Billot, Benjamin, Robinson, Eleanor D., Dalca, Adrian V., Iglesias, Juan Eugenio

论文摘要

部分体积(PV)可以说是用概率地图集贝叶斯分割的贝叶斯分割中的最后一个关键的未解决问题。当体素包含多个组织类别时,就会发生PV,从而产生图像强度,这些强度可能无法代表任何一个基础类别。当地图集和测试扫描之间存在较大的分辨率差距时,PV对于分割尤其有问题,例如,在用厚切片进行分割时或使用高分辨率地图集时。在这项工作中,我们提出了PV-Synthseg,这是一种卷积神经网络(CNN),通过直接学习(可能是多模式)低分辨率(LR)扫描和基础高分辨率(HR)段之间的映射来解决此问题。 PV-synthseg用PV的生成模型模拟了来自HR标签图的LR图像,并且可以训练以分割任何所需的目标对比度和分辨率的扫描,即使对于以前未见的模式,在训练中都无法使用图像和分段。 PV-synthseg不需要任何预处理,并且在几秒钟内运行。我们通过在三个数据集和2,680次扫描上进行了广泛的实验来证明该方法的准确性和灵活性。该代码可在https://github.com/bbillot/synthseg上找到。

Partial voluming (PV) is arguably the last crucial unsolved problem in Bayesian segmentation of brain MRI with probabilistic atlases. PV occurs when voxels contain multiple tissue classes, giving rise to image intensities that may not be representative of any one of the underlying classes. PV is particularly problematic for segmentation when there is a large resolution gap between the atlas and the test scan, e.g., when segmenting clinical scans with thick slices, or when using a high-resolution atlas. In this work, we present PV-SynthSeg, a convolutional neural network (CNN) that tackles this problem by directly learning a mapping between (possibly multi-modal) low resolution (LR) scans and underlying high resolution (HR) segmentations. PV-SynthSeg simulates LR images from HR label maps with a generative model of PV, and can be trained to segment scans of any desired target contrast and resolution, even for previously unseen modalities where neither images nor segmentations are available at training. PV-SynthSeg does not require any preprocessing, and runs in seconds. We demonstrate the accuracy and flexibility of the method with extensive experiments on three datasets and 2,680 scans. The code is available at https://github.com/BBillot/SynthSeg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源