论文标题
Yoga-82:一种用于人类姿势细粒度分类的新数据集
Yoga-82: A New Dataset for Fine-grained Classification of Human Poses
论文作者
论文摘要
人姿势估计是计算机视觉中的一个众所周知的问题,可以定位关节位置。观察到用于学习姿势的现有数据集在姿势多样性,对象遮挡和观点方面没有足够的挑战。这使得姿势注释过程相对简单,并限制了已训练它们的模型的应用。为了处理更多人类姿势的多样性,我们提出了细粒度的分层姿势分类的概念,其中我们将姿势估计作为分类任务,并提出一个数据集Yoga-82,以供大规模瑜伽姿势识别82个类别。瑜伽82由复杂的姿势组成,可能无法进行精细注释。为了解决这个问题,我们根据姿势的身体配置为瑜伽姿势提供分层标签。该数据集包含一个三级层次结构,包括身体位置,身体位置的变化以及实际的姿势名称。我们介绍了瑜伽82上最新的卷积神经网络体系结构的分类准确性。我们还提出了Densenet的几种分层变体,以利用分层标签。
Human pose estimation is a well-known problem in computer vision to locate joint positions. Existing datasets for the learning of poses are observed to be not challenging enough in terms of pose diversity, object occlusion, and viewpoints. This makes the pose annotation process relatively simple and restricts the application of the models that have been trained on them. To handle more variety in human poses, we propose the concept of fine-grained hierarchical pose classification, in which we formulate the pose estimation as a classification task, and propose a dataset, Yoga-82, for large-scale yoga pose recognition with 82 classes. Yoga-82 consists of complex poses where fine annotations may not be possible. To resolve this, we provide hierarchical labels for yoga poses based on the body configuration of the pose. The dataset contains a three-level hierarchy including body positions, variations in body positions, and the actual pose names. We present the classification accuracy of the state-of-the-art convolutional neural network architectures on Yoga-82. We also present several hierarchical variants of DenseNet in order to utilize the hierarchical labels.