论文标题
Matsuo代数中的怪物类型的双轴和亚代桥
Double axes and subalgebras of Monster type in Matsuo algebras
论文作者
论文摘要
轴向代数是一类由轴测体(称为轴)产生的交换性的非缔合代数,具有半简单的伴随作用,并满足了规定的融合定律。 Hall,Rehren和Sheptorov \ cite {hrs,hrs1}引入了轴向代数,作为对伊万诺夫的主要代数的广泛概括,其公理源自Monster Sporadic Simple群体的Griess代数的特性。 Monster类型的轴向代数类别包括用于怪物的Majorana代数和许多其他零星的简单组,Jordan代数,用于古典和一些非凡的简单组,以及对应于$ 3 $ TRANSPOISTION组的Matsuo代数。因此,怪物类型的轴向代数在有限的简单组理论中统一了几条链。 这里显示的是双轴,即MATSUO代数中两个正交轴的总和满足Monster Type $(2η,η)$的融合定律。由两个单轴或双轴产生的原始子代理完全分类,并且在三种情况之一中将$ 3 $生成的原始子代理分类分类。这些分类进一步导致一般的翻转结构输出,以怪物类型的各种轴向代数。 Flip结构的应用与与对称组有关的MATSUO代数的情况,导致了三个新的无限无限序列此类代数。
Axial algebras are a class of commutative non-associative algebras generated by idempotents, called axes, with adjoint action semi-simple and satisfying a prescribed fusion law. Axial algebras were introduced by Hall, Rehren and Shpectorov \cite{hrs,hrs1} as a broad generalisation of Majorana algebras of Ivanov, whose axioms were derived from the properties of the Griess algebra for the Monster sporadic simple group. The class of axial algebras of Monster type includes Majorana algebras for the Monster and many other sporadic simple groups, Jordan algebras for classical and some exceptional simple groups, and Matsuo algebras corresponding to $3$-transposition groups. Thus, axial algebras of Monster type unify several strands in the theory of finite simple groups. It is shown here that double axes, i.e., sums of two orthogonal axes in a Matsuo algebra, satisfy the fusion law of Monster type $(2η,η)$. Primitive subalgebras generated by two single or double axes are completely classified and $3$-generated primitive subalgebras are classified in one of the three cases. These classifications further lead to the general flip construction outputting a rich variety of axial algebras of Monster type. An application of the flip construction to the case of Matsuo algebras related to the symmetric groups results in three new explicit infinite series of such algebras.