论文标题

美国州长和内阁高管中的Covid-19 Twitter叙述的动态主题建模

Dynamic topic modeling of the COVID-19 Twitter narrative among U.S. governors and cabinet executives

论文作者

Sha, Hao, Hasan, Mohammad Al, Mohler, George, Brantingham, P. Jeffrey

论文摘要

联邦和州级决策的结合塑造了美国对Covid-19的反应。在本文中,我们通过将动态主题模型应用于美国州长和总统内阁成员相关推文,分析了有关该决策的叙述。我们使用网络霍克斯二项式主题模型来跟踪有关风险,测试和治疗的不断发展的子主题。我们还使用网络霍克斯进程推断出的Granger因果关系,在政府官员中构建了影响网络。

A combination of federal and state-level decision making has shaped the response to COVID-19 in the United States. In this paper we analyze the Twitter narratives around this decision making by applying a dynamic topic model to COVID-19 related tweets by U.S. Governors and Presidential cabinet members. We use a network Hawkes binomial topic model to track evolving sub-topics around risk, testing and treatment. We also construct influence networks amongst government officials using Granger causality inferred from the network Hawkes process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源