论文标题

全带式晶格中的非线性笼

Nonlinear caging in All-Bands-Flat Lattices

论文作者

Danieli, Carlo, Andreanov, Alexei, Mithun, Thudiyangal, Flach, Sergej

论文摘要

我们研究了经典的短距离非线性相互作用对没有分散的晶格中传输的影响。这些晶格的单个颗粒带结构仅包含平坦的带,并将非相互作用的颗粒固定在紧凑的局部本征态中。我们证明,始终存在局部统一转换,使这种晶格在维度一个中将这种晶格缠绕到脱钩的位置。从杂质的表示开始,将缠结变成纠缠统一转换并延伸到更高的晶格尺寸,我们到达了任何晶格尺寸中的单个粒子状态的全频段 - 弗拉特生成器。纠缠统一的转换是通过一组角度参数化的。对于一组全频段的给定成员,额外的短距离非线性相互作用一般会破坏笼子,并诱导运输。但是,单位转换的微调子集可以完全恢复笼子。我们为非线性笼子提供了必要和足够的微调条件,并为一维系统提供了我们结论的计算证据。

We study the impact of classical short-range nonlinear interactions on transport in lattices with no dispersion. The single particle band structure of these lattices contains flat bands only, and cages non-interacting particles into compact localized eigenstates. We demonstrate that there always exist local unitary transformations that detangle such lattices into decoupled sites in dimension one. Starting from a detangled representation, inverting the detangling into entangling unitary transformations and extending to higher lattice dimensions, we arrive at an All-Bands-Flat generator for single particle states in any lattice dimension. The entangling unitary transformations are parametrized by sets of angles. For a given member of the set of all-bands-flat, additional short-range nonlinear interactions destroy caging in general, and induce transport. However, fine-tuned subsets of the unitary transformations allow to completely restore caging. We derive the necessary and sufficient fine-tuning conditions for nonlinear caging, and provide computational evidence of our conclusions for one-dimensional systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源