论文标题

基于RL的干扰缓解不协调的网络中有部分重叠的音调

RL-Based Interference Mitigation in Uncoordinated Networks with Partially Overlapping Tones

论文作者

Deshmukh, Mrugen, Chowdhury, Md Moin Uddin, Maeng, Sung Joon, Sahin, Alphan, Guvenc, Ismail

论文摘要

已知部分重叠的音调(POT)可以通过将有意的频率偏移(FOS)引入传输信号来帮助减轻不协调的多载波网络中的共同通道干扰。在本文中,我们探讨了(POT)在密集网络中使用加固学习(RL)的使用,其中多个链接同时访问了时间频率资源。我们提出了一个基于Q学习的新框架,以获取用于每个链接的多载波波形的(FO)。特别是,我们考虑利用高斯,根刺的科斯(RRC)和各向同性正交转换算法(IOTA)的原型原型过滤器的过滤多音(FMT)系统。我们的仿真结果表明,所提出的方案在高信噪比(SNR)的添加性白色高斯噪声(AWGN)通道中至少提高了30 \%的能力,并且在存在严重多路径褪色的情况下,甚至更大。对于广泛的干扰链路密度,我们证明了(POT)促进的中断概率和多用户效率的实质性改善,高斯滤波器的表现优于其他两个过滤器。

Partially-overlapping tones (POT) are known to help mitigate co-channel interference in uncoordinated multi-carrier networks by introducing intentional frequency offsets (FOs) to the transmitted signals. In this paper, we explore the use of (POT) with reinforcement learning (RL) in dense networks where multiple links access time-frequency resources simultaneously. We propose a novel framework based on Q-learning, to obtain the (FO) for the multi-carrier waveform used for each link. In particular, we consider filtered multi-tone (FMT) systems that utilize Gaussian, root-raised-cosine (RRC), and isotropic orthogonal transform algorithm (IOTA) based prototype filters. Our simulation results show that the proposed scheme enhances the capacity of the links by at least 30\% in additive white Gaussian noise (AWGN) channel at high signal-to-noise ratio (SNR), and even more so in the presence of severe multi-path fading. For a wide range of interfering link densities, we demonstrate substantial improvements in the outage probability and multi-user efficiency facilitated by (POT), with the Gaussian filter outperforming the other two filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源