论文标题

深光子映射

Deep Photon Mapping

论文作者

Zhu, Shilin, Xu, Zexiang, Jensen, Henrik Wann, Su, Hao, Ramamoorthi, Ravi

论文摘要

最近,基于深度学习的denoising方法导致了低样本计数蒙特卡洛渲染的显着改善。这些方法针对路径追踪,这对于模拟苛刻的苛刻效果(如光子映射是选择的方法)而不是理想的选择。但是,光子映射需要大量的追踪光子才能实现高质量的重建。在本文中,我们开发了第一个用于基于粒子的渲染的基于深度学习的方法,并特别关注光子密度估计,这是所有基于粒子方法的核心。我们训练一个新颖的深神经网络,以预测内核功能,以在阴影点汇总光子贡献。我们的网络将单个光子编码为每个光子特征,将它们汇总在构造光子局部上下文向量的阴影附近,并从每个光子和Photon局部上下文特征中输入内核函数。该网络易于将其纳入许多以前的光子映射方法(通过简单地交换内核密度估计器),并且可以与先前的光子映射方法相比,可以产生复杂的全球照明效应(例如苛性剂量,较小的光子)的高质量重建。

Recently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particle-based rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源