论文标题

广义接触汉密尔顿 - 雅各比方程的粘度解决方案的融合

Convergence of viscosity solutions of generalized contact Hamilton-Jacobi equations

论文作者

Wang, Yanan, Yan, Jun, Zhang, Jianlu

论文摘要

对于任何紧凑的连接歧管$ m $,我们考虑在$ t^*m \ times \ times \ mathbb r $上定义的广义联系人hamiltonian $ h(x,p,u)$,它是$ p $的conex,单调增加$ u $。令$u_ε^ - :m \ rightArrow \ mathbb r $为参数化触点的粘度解决方案hamilton-jacobi方程\ [h(x,x,x,\ partial_x u_is^ - (x),εu_im^ - (x),(x))= c(h))= c(h)$ c(h)$是Maine caligration callista crigital Valifter。 We prove that $u_ε^-$ converges uniformly, as $ε\rightarrow 0_+$, to a specfic viscosity solution $u_0^-$ of the critical equation \[ H(x,\partial_x u_0^-(x),0)=c(H) \] which can be characterized as a minimal combination of associated Peierls barrier functions.

For any compact connected manifold $M$, we consider the generalized contact Hamiltonian $H(x,p,u)$ defined on $T^*M\times\mathbb R$ which is conex in $p$ and monotonically increasing in $u$. Let $u_ε^-:M\rightarrow\mathbb R$ be the viscosity solution of the parametrized contact Hamilton-Jacobi equation \[ H(x,\partial_x u_ε^-(x),εu_ε^-(x))=c(H) \] with $c(H)$ being the Mañé Critical Value. We prove that $u_ε^-$ converges uniformly, as $ε\rightarrow 0_+$, to a specfic viscosity solution $u_0^-$ of the critical equation \[ H(x,\partial_x u_0^-(x),0)=c(H) \] which can be characterized as a minimal combination of associated Peierls barrier functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源