论文标题

MATINF:一个共同标记的大型数据集用于分类,问答和摘要

MATINF: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization

论文作者

Xu, Canwen, Pei, Jiaxin, Wu, Hongtao, Liu, Yiyu, Li, Chenliang

论文摘要

最近,大规模数据集已极大地促进了几乎所有自然语言处理领域的发展。但是,NLP中目前尚无交叉任务数据集,这阻碍了多任务学习的发展。我们建议MATINF,这是第一个共同标记的大规模数据集,用于分类,问题答案和摘要。 MATINF包含10700万个问题,与人体标记的类别和用户生成的问题描述。基于这样的丰富信息,MATINF适用于三个主要的NLP任务,包括分类,问题答案和摘要。我们基于MATINF上的现有方法和一种新型的多任务基线,以激发进一步的研究。我们对MATINF和其他数据集进行的全面比较和实验证明了MATINF的优点。

Recently, large-scale datasets have vastly facilitated the development in nearly all domains of Natural Language Processing. However, there is currently no cross-task dataset in NLP, which hinders the development of multi-task learning. We propose MATINF, the first jointly labeled large-scale dataset for classification, question answering and summarization. MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the merits held by MATINF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源