论文标题

cascadetabnet:端到端表检测和结构识别的方法

CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents

论文作者

Prasad, Devashish, Gadpal, Ayan, Kapadni, Kshitij, Visave, Manish, Sultanpure, Kavita

论文摘要

用于解释文档图像中表格数据的自动表识别方法主要涉及解决表检测和表结构识别的两个问题。先前的工作涉及使用两种单独的方法独立解决这两个问题。最近的作品表示使用基于深度学习的解决方案,同时也试图设计端到端解决方案。在本文中,我们提出了一种使用单个卷积神经网络(CNN)模型来解决桌子检测问题和结构识别问题的基于深度学习的端到最终方法。我们提出了cascadetabnet:基于级联面罩区域的CNN高分辨率网络(级联面膜R-CNN HRNET)模型,该模型检测表的区域并同时从检测表中识别从检测表中的结构细胞。我们在ICDAR 2013,ICDAR 2019和Tablebank公共数据集上评估我们的结果。我们在ICDAR 2019后获得第三名,以获取表检测,同时获得ICDAR 2013和TableBank数据集的最佳准确性结果。我们还可以在ICDAR 2019表结构识别数据集上获得最高的精度结果。此外,我们展示了有效的转移学习和图像增强技术,使CNN能够获得非常准确的表检测结果。代码和数据集已在以下网址提供:https://github.com/devashishprasad/cascadetabnet

An automatic table recognition method for interpretation of tabular data in document images majorly involves solving two problems of table detection and table structure recognition. The prior work involved solving both problems independently using two separate approaches. More recent works signify the use of deep learning-based solutions while also attempting to design an end to end solution. In this paper, we present an improved deep learning-based end to end approach for solving both problems of table detection and structure recognition using a single Convolution Neural Network (CNN) model. We propose CascadeTabNet: a Cascade mask Region-based CNN High-Resolution Network (Cascade mask R-CNN HRNet) based model that detects the regions of tables and recognizes the structural body cells from the detected tables at the same time. We evaluate our results on ICDAR 2013, ICDAR 2019 and TableBank public datasets. We achieved 3rd rank in ICDAR 2019 post-competition results for table detection while attaining the best accuracy results for the ICDAR 2013 and TableBank dataset. We also attain the highest accuracy results on the ICDAR 2019 table structure recognition dataset. Additionally, we demonstrate effective transfer learning and image augmentation techniques that enable CNNs to achieve very accurate table detection results. Code and dataset has been made available at: https://github.com/DevashishPrasad/CascadeTabNet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源