论文标题
无监督的真实图像超分辨率通过生成变异自动编码器
Unsupervised Real Image Super-Resolution via Generative Variational AutoEncoder
论文作者
论文摘要
从深度学习中受益,图像超分辨率一直是计算机视觉中发展最开发的研究领域之一。根据是否使用歧视器,深度卷积神经网络可以提供具有高忠诚度或更好感知质量的图像。由于现实生活中缺乏地面真相图像,人们更喜欢忠诚度低的照片真实图像,而不是高保真度的模糊图像。在本文中,我们重新审视了经典的基于示例的图像超分辨率方法,并提出了一种用于感知图像超分辨率的新型生成模型。鉴于真实图像包含各种噪声和伪影,我们通过变异自动编码器提出了一个联合图像denoising和超分辨率模型。我们提出了一个条件变化自动编码器来编码密集特征向量的参考,然后可以将其传输到解码器以进行目标图像Denoising。借助歧视器,附加了超分辨率子网的额外开销,以使用光真逼真的视觉质量来溶解超级分辨率的图像。我们参加了NTIRE2020真实图像超分辨率挑战。实验结果表明,通过使用所提出的方法,与其他监督方法相比,我们可以获得具有干净宜人特征的扩大图像。我们还将我们的方法与各种数据集上的最新方法进行了比较,以证明我们提出的无监督超分辨率模型的效率。
Benefited from the deep learning, image Super-Resolution has been one of the most developing research fields in computer vision. Depending upon whether using a discriminator or not, a deep convolutional neural network can provide an image with high fidelity or better perceptual quality. Due to the lack of ground truth images in real life, people prefer a photo-realistic image with low fidelity to a blurry image with high fidelity. In this paper, we revisit the classic example based image super-resolution approaches and come up with a novel generative model for perceptual image super-resolution. Given that real images contain various noise and artifacts, we propose a joint image denoising and super-resolution model via Variational AutoEncoder. We come up with a conditional variational autoencoder to encode the reference for dense feature vector which can then be transferred to the decoder for target image denoising. With the aid of the discriminator, an additional overhead of super-resolution subnetwork is attached to super-resolve the denoised image with photo-realistic visual quality. We participated the NTIRE2020 Real Image Super-Resolution Challenge. Experimental results show that by using the proposed approach, we can obtain enlarged images with clean and pleasant features compared to other supervised methods. We also compared our approach with state-of-the-art methods on various datasets to demonstrate the efficiency of our proposed unsupervised super-resolution model.