论文标题

关于模拟和数据科学中不确定性的量化,沟通和解释的研讨会

Workshop on Quantification, Communication, and Interpretation of Uncertainty in Simulation and Data Science

论文作者

Whitaker, Ross, Thompson, William, Berger, James, Fischhof, Baruch, Goodchild, Michael, Hegarty, Mary, Jermaine, Christopher, McKinley, Kathryn S., Pang, Alex, Wendelberger, Joanne

论文摘要

现代科学,技术和政治都被来自人,测量或计算过程的数据所渗透。尽管这些数据通常是不完整,损坏或缺乏足够准确性和精确度,但对不确定性的明确考虑很少是计算和决策管道的一部分。 CCC关于模拟和数据科学不确定性的量化,沟通和解释的研讨会探讨了这个问题,从而确定了我们当前处理,存在和解释不确定数据的重大缺点。关于未来研究议程的具体建议是在四个领域提出的:大规模计算模拟中的不确定性量化,数据科学中的不确定性量化,对不确定性计算的软件支持以及更好地整合不确定性量化和与利益相关者的沟通。

Modern science, technology, and politics are all permeated by data that comes from people, measurements, or computational processes. While this data is often incomplete, corrupt, or lacking in sufficient accuracy and precision, explicit consideration of uncertainty is rarely part of the computational and decision making pipeline. The CCC Workshop on Quantification, Communication, and Interpretation of Uncertainty in Simulation and Data Science explored this problem, identifying significant shortcomings in the ways we currently process, present, and interpret uncertain data. Specific recommendations on a research agenda for the future were made in four areas: uncertainty quantification in large-scale computational simulations, uncertainty quantification in data science, software support for uncertainty computation, and better integration of uncertainty quantification and communication to stakeholders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源