论文标题
冲击中的震惊:重新审视NS合并弹射器和Grb-Supernovae的无线电耀斑
Shock within a shock: revisiting the radio flares of NS merger ejecta and GRB-supernovae
论文作者
论文摘要
在二进制中子星(NS)合并或能量超新星(SNE)中排出的快速弹射应产生延迟的同步加速器无线电发射,因为射流冲击到周围的环境培养基中。此类无线电耀斑的模型通常假设射流扩展为未扰动的星际介质(ISM)。但是,众所周知,二进制NS合并和宽衬有IC SNE可以具有相对论的喷射流出。在这项工作中,我们表明这种喷气机震惊了弹射器前的环境,从而撤离了射流后随后碰撞的介质。使用理想化的球形对称模型,我们说明这会抑制早期的弹射无线电耀斑$ t <t <t _ {\ rm col} \大约12 \,{\ rm yr} \,(e _ {e _ {\ rm j} {\ rm cm}^{ - 3})^{ - 1/3}(v _ {\ rm ej} /0.1c)^{ - 5/3} $其中$ e _ {\ rm j} $是jet Energy,$ n $ n $ ism dement,$ n $ iSm dentive the ism dentive and $ v _ ext $ ej} $ ej}我们还表明,这可能会在$ t = t _ {\ rm col} $的情况下产生尖峰的峰值增强。这对GW170817的无线电观察以及未来的二进制NS合并,伽马射线爆发(GRB)SNE,十年的无线电瞬变(例如第一个J1419)以及相对论流出之前的其他事件,在较慢的移动射出之前。未来的数值工作将扩展这些分析估计并处理问题的多维性质。
Fast ejecta expelled in binary neutron star (NS) mergers or energetic supernovae (SNe) should produce late-time synchrotron radio emission as the ejecta shocks into the surrounding ambient medium. Models for such radio flares typically assume the ejecta expands into an unperturbed interstellar medium (ISM). However, it is also well-known that binary NS mergers and broad-lined Ic SNe can harbor relativistic jetted outflows. In this work, we show that such jets shock the ambient ISM ahead of the ejecta, thus evacuating the medium into which the ejecta subsequently collides. Using an idealized spherically-symmetric model, we illustrate that this inhibits the ejecta radio flare at early times $t < t_{\rm col} \approx 12 \, {\rm yr} \, (E_{\rm j}/10^{49} \, {\rm erg})^{1/3} (n/1 \, {\rm cm}^{-3})^{-1/3} (v_{\rm ej}/0.1c)^{-5/3}$ where $E_{\rm j}$ is the jet energy, $n$ the ISM density, and $v_{\rm ej}$ the ejecta velocity. We also show that this can produce a sharply peaked enhancement in the light-curve at $t = t_{\rm col}$. This has implications for radio observations of GW170817 and future binary NS mergers, gamma-ray burst (GRB) SNe, decade-long radio transients such as FIRST J1419, and possibly other events where a relativistic outflow precedes a slower-moving ejecta. Future numerical work will extend these analytic estimates and treat the multi-dimensional nature of the problem.