论文标题
将旁观者量楼集成到量子计算机架构中,用于硬件调整和校准
Integration of spectator qubits into quantum computer architectures for hardware tuneup and calibration
论文作者
论文摘要
进行有效的量子计算机调整和校准对于系统复杂性的增长至关重要。在这项工作中,我们探讨了促进此类功能与物理硬件的基础体系结构之间的联系。我们专注于测量(``映射'')在空间不均匀的准静态校准误差的特定挑战上,该校准使用了专门用于传感和校准任务的观众量子。我们介绍了一种新颖的架构概念,用于这种观众码头:根据最佳2D近似理论的规定,在空间上排列它们。我们表明,这种洞察力允许有效地重建量子校准中的不均匀性,重点介绍了可能由制造方差或环境磁场引起的频率误差的特定示例。我们的结果表明,如果测得的特征(此处量子频率)变化平稳,并且我们探测了这些益处作为测量不确定性的函数,则最佳插值技术几乎显示出最佳误差尺度。对于更复杂的空间变化,我们证明了用于自适应测量和噪声过滤的NMQA形式主义的表现优于隔离的最佳插值技术,并且至关重要的是,可以将最佳插值理论的见解结合在一起,以产生一般目的协议。
Performing efficient quantum computer tuneup and calibration is essential for growth in system complexity. In this work we explore the link between facilitating such capabilities and the underlying architecture of the physical hardware. We focus on the specific challenge of measuring (``mapping'') spatially inhomogeneous quasi-static calibration errors using spectator qubits dedicated to the task of sensing and calibration. We introduce a novel architectural concept for such spectator qubits: arranging them spatially according to prescriptions from optimal 2D approximation theory. We show that this insight allows for efficient reconstruction of inhomogeneities in qubit calibration, focusing on the specific example of frequency errors which may arise from fabrication variances or ambient magnetic fields. Our results demonstrate that optimal interpolation techniques display near optimal error-scaling in cases where the measured characteristic (here the qubit frequency) varies smoothly, and we probe the limits of these benefits as a function of measurement uncertainty. For more complex spatial variations, we demonstrate that the NMQA formalism for adaptive measurement and noise filtering outperforms optimal interpolation techniques in isolation, and crucially, can be combined with insights from optimal interpolation theory to produce a general purpose protocol.