论文标题
Phygeonet:物理知识的几何形状自适应卷积神经网络,用于在不规则域上求解参数化的稳态PDE
PhyGeoNet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs on Irregular Domain
论文作者
论文摘要
最近,深度学习的出现刺激了对物理信息的神经网络(PINN)的发展,以有效地解决偏微分方程(PDE),尤其是在参数环境中。在所有不同类别的深神经网络中,卷积神经网络(CNN)在科学机器学习社区中引起了越来越多的关注,因为CNN中的参数共享特征可以有效学习大规模时空领域的问题。但是,最大的挑战之一是CNN只能处理具有图像状格式的常规几何形状(即具有均匀网格的矩形域)。在本文中,我们提出了一种新颖的物理受限的CNN学习架构,旨在在没有任何标记数据的情况下学习不规则域的参数PDE解决方案。为了利用强大的经典CNN骨架,引入了椭圆坐标映射,以在不规则的物理域和常规参考域之间启用坐标变换。已通过在不规则域上求解许多PDE,包括热方程和稳定的Navier-Stokes方程来评估所提出的方法,具有参数化的边界条件和不同的几何形状。此外,该方法还与具有完全连接的神经网络(FC-NN)配方的最新PINN进行了比较。数值结果证明了所提出的方法的有效性,并且在效率和准确性方面,基于FC-NN的PINN表现出显着的优势。
Recently, the advent of deep learning has spurred interest in the development of physics-informed neural networks (PINN) for efficiently solving partial differential equations (PDEs), particularly in a parametric setting. Among all different classes of deep neural networks, the convolutional neural network (CNN) has attracted increasing attention in the scientific machine learning community, since the parameter-sharing feature in CNN enables efficient learning for problems with large-scale spatiotemporal fields. However, one of the biggest challenges is that CNN only can handle regular geometries with image-like format (i.e., rectangular domains with uniform grids). In this paper, we propose a novel physics-constrained CNN learning architecture, aiming to learn solutions of parametric PDEs on irregular domains without any labeled data. In order to leverage powerful classic CNN backbones, elliptic coordinate mapping is introduced to enable coordinate transforms between the irregular physical domain and regular reference domain. The proposed method has been assessed by solving a number of PDEs on irregular domains, including heat equations and steady Navier-Stokes equations with parameterized boundary conditions and varying geometries. Moreover, the proposed method has also been compared against the state-of-the-art PINN with fully-connected neural network (FC-NN) formulation. The numerical results demonstrate the effectiveness of the proposed approach and exhibit notable superiority over the FC-NN based PINN in terms of efficiency and accuracy.