论文标题
基于机器学习的移动网络吞吐量分类
Machine Learning Based Mobile Network Throughput Classification
论文作者
论文摘要
当网络的复杂性增加时,确定4G单元格中的移动网络问题更具挑战性,并且隐私问题限制了数据的信息内容。本文提出了一个数据驱动模型,用于识别具有基本网络吞吐量问题的4G单元。提出的模型利用了聚类和深神经网络(DNN)。使用少量专家标记的数据学习模型参数。为了实现特定案例分类,我们提出了一个包含多个聚类模型块的模型,以捕获有问题的单元格常见的特征。然后,该块的捕获特征用作DNN的输入。实验表明,所提出的模型在识别具有网络吞吐量问题的细胞方面优于简单的分类器。据作者所知,没有相关的研究在细胞级别上进行网络吞吐量分类,并且仅从服务提供商方面收集的信息。
Identifying mobile network problems in 4G cells is more challenging when the complexity of the network increases, and privacy concerns limit the information content of the data. This paper proposes a data driven model for identifying 4G cells that have fundamental network throughput problems. The proposed model takes advantage of clustering and Deep Neural Networks (DNNs). Model parameters are learnt using a small number of expert-labeled data. To achieve case specific classification, we propose a model that contains a multiple clustering models block, for capturing features common for problematic cells. The captured features of this block are then used as an input to a DNN. Experiments show that the proposed model outperforms a simple classifier in identifying cells with network throughput problems. To the best of the authors' knowledge, there is no related research where network throughput classification is performed on the cell level with information gathered only from the service provider's side.