论文标题

元学习的几杆土地覆盖分类

Meta-Learning for Few-Shot Land Cover Classification

论文作者

Rußwurm, Marc, Wang, Sherrie, Körner, Marco, Lobell, David

论文摘要

地球表面的表示从一个地理区域到另一个地理区域不同。例如,城市地区的出现在大陆之间有所不同,季节性会影响植被的出现。要捕获单个类别中的多样性,例如城市或植被,需要大型模型容量,因此需要大型数据集。在这项工作中,我们提出了不同的观点,并将这种多样性视为一个感应转移学习问题,其中很少有一个区域的数据样本允许模型适应看不见的区域。我们使用全球和区域分布的数据集评估了分类和分割任务的模型 - 反应元学习(MAML)算法。我们发现,当源域和目标域不同时,很少有射击模型适应性优于(1)SEN12MS数据集和(2)DeepGlobe数据的定期梯度下降和(1)sen12ms数据集和(2)deepglobe数据的训练。这表明使用元学习的模型优化可能会使地球科学的任务受益,这些地球科学的数据显示出各个地区的多样性高度的多样性,而传统的基于梯度的监督学习在没有特征或标签转移的情况下仍然适合。

The representations of the Earth's surface vary from one geographic region to another. For instance, the appearance of urban areas differs between continents, and seasonality influences the appearance of vegetation. To capture the diversity within a single category, like as urban or vegetation, requires a large model capacity and, consequently, large datasets. In this work, we propose a different perspective and view this diversity as an inductive transfer learning problem where few data samples from one region allow a model to adapt to an unseen region. We evaluate the model-agnostic meta-learning (MAML) algorithm on classification and segmentation tasks using globally and regionally distributed datasets. We find that few-shot model adaptation outperforms pre-training with regular gradient descent and fine-tuning on (1) the Sen12MS dataset and (2) DeepGlobe data when the source domain and target domain differ. This indicates that model optimization with meta-learning may benefit tasks in the Earth sciences whose data show a high degree of diversity from region to region, while traditional gradient-based supervised learning remains suitable in the absence of a feature or label shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源