论文标题

几乎肯莫图(Kenmotsu)承认某些关键指标

Almost Kenmotsu Manifolds Admitting Certain Critical Metric

论文作者

Dey, Dibakar

论文摘要

在本文中,我们介绍了几乎接触度量歧管上的$ \ ast $ -miao-tam临界方程的概念,并在几乎肯莫托歧管的类中进行了研究。 It is shown that if the metric of a $(2n + 1)$-dimensional $(k,μ)'$-almost Kenmotsu manifold $(M,g)$ satisfies the $\ast$-Miao-Tam critical equation, then the manifold $(M,g)$ is $\ast$-Ricci flat and locally isometric to the Riemannian product of a $(n + 1)$-dimensional manifold of恒定的截面曲率$ -4 $和平坦的$ n $ dimensional歧管。最后,提出了一个说明性示例以支持主定理。

In the present paper, we introduce the notion of $\ast$-Miao-Tam critical equation on almost contact metric manifolds and studied on a class of almost Kenmotsu manifold. It is shown that if the metric of a $(2n + 1)$-dimensional $(k,μ)'$-almost Kenmotsu manifold $(M,g)$ satisfies the $\ast$-Miao-Tam critical equation, then the manifold $(M,g)$ is $\ast$-Ricci flat and locally isometric to the Riemannian product of a $(n + 1)$-dimensional manifold of constant sectional curvature $-4$ and a flat $n$-dimensional manifold. Finally, an illustrative example is presented to support the main theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源