论文标题
Helmholtz问题的边界元素方法弱强加的边界条件
Boundary element methods for Helmholtz problems with weakly imposed boundary conditions
论文作者
论文摘要
我们考虑使用Calderón投影仪用于系统矩阵的边界元素方法,并且使用使用增强拉格朗日方法的技术设计的特定变分边界运算符对边界条件进行弱施加。无论边界条件如何,原始痕量变量和通量都近似。我们将重点放在对Helmholtz方程上的dirichlet条件上,并将拉普拉斯问题的分析从\ emph {边界元素方法{边界元素方法具有弱施加的边界条件}扩展到这种情况。该理论由一系列数值示例说明。
We consider boundary element methods where the Calderón projector is used for the system matrix and boundary conditions are weakly imposed using a particular variational boundary operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary conditions, both the primal trace variable and the flux are approximated. We focus on the imposition of Dirichlet conditions on the Helmholtz equation, and extend the analysis of the Laplace problem from \emph{Boundary element methods with weakly imposed boundary conditions} to this case. The theory is illustrated by a series of numerical examples.