论文标题

使用张量完成的商业建筑HVAC风扇电源的基线估计

Baseline Estimation of Commercial Building HVAC Fan Power Using Tensor Completion

论文作者

Lei, Shunbo, Hong, David, Mathieu, Johanna L., Hiskens, Ian A.

论文摘要

已经研究了商业建筑供暖,通风和空调(HVAC)系统,用于通过需求响应(DR)为电网提供辅助服务。一个关键的问题是估计如果没有DR的情况,该基线功耗将盛行。基线方法是基于整个建筑物的电力负载概况开发的。为了估计HVAC子组件的基线功耗(例如,供应和返回风扇),与整个建筑物相比具有不同的特征,这是必要的。张量完成可以估计描述复杂数据集的多维张量的未观察到的条目。它利用高维数据来捕获对问题的颗粒状见解。本文提议将其用于基础HVAC风扇电源,并利用其捕获主体风扇电源模式的能力。使用来自密歇根大学的几座建筑物的HVAC风扇电源数据评估张量的完成方法,并与几种现有方法进行了比较。张量完成方法通常优于基准。

Commercial building heating, ventilation, and air conditioning (HVAC) systems have been studied for providing ancillary services to power grids via demand response (DR). One critical issue is to estimate the counterfactual baseline power consumption that would have prevailed without DR. Baseline methods have been developed based on whole building electric load profiles. New methods are necessary to estimate the baseline power consumption of HVAC sub-components (e.g., supply and return fans), which have different characteristics compared to that of the whole building. Tensor completion can estimate the unobserved entries of multi-dimensional tensors describing complex data sets. It exploits high-dimensional data to capture granular insights into the problem. This paper proposes to use it for baselining HVAC fan power, by utilizing its capability of capturing dominant fan power patterns. The tensor completion method is evaluated using HVAC fan power data from several buildings at the University of Michigan, and compared with several existing methods. The tensor completion method generally outperforms the benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源