论文标题

罗斯定理的塔式范围有流行的差异

Tower-type bounds for Roth's theorem with popular differences

论文作者

Fox, Jacob, Pham, Huy Tuan, Zhao, Yufei

论文摘要

绿色开发了一种算术规律性引理,以证明罗斯定理在密集集中的算术进展方面得到了加强。它指出,每$ε> 0 $都有一些$ n_0(ε)$,以便每$ n \ ge n_0(ε)$和$ a \ aubset [n] $带有$ | a | =αn$,有一些非零$ d $,因此$ a $至少包含$(α^3 - ε)n $三$三 - 算术算术进展,差异为$ d $。 我们证明,格林定理中的最低$ n_0(ε)$是$ \ log(1/ε)$的指数高度为2s的高度塔。上限和上限都是新的。它表明,在本应用中使用规律性引理产生的较高型界限是定量的。

Green developed an arithmetic regularity lemma to prove a strengthening of Roth's theorem on arithmetic progressions in dense sets. It states that for every $ε> 0$ there is some $N_0(ε)$ such that for every $N \ge N_0(ε)$ and $A \subset [N]$ with $|A| = αN$, there is some nonzero $d$ such that $A$ contains at least $(α^3 - ε) N$ three-term arithmetic progressions with common difference $d$. We prove that the minimum $N_0(ε)$ in Green's theorem is an exponential tower of 2s of height on the order of $\log(1/ε)$. Both the lower and upper bounds are new. It shows that the tower-type bounds that arise from the use of a regularity lemma in this application are quantitatively necessary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源