论文标题

二元粒子堆积动力学中远程内聚力的影响

Effects of the long-range cohesive forces in binary particle packing dynamics

论文作者

Ferraz, Carlos Handrey Araujo

论文摘要

关于二散性颗粒的随机堆积的研究表明,这种系统可以捕获物理和材料工程中发现的更复杂现象的潜在行为。在行业中,二散性颗粒用于允许形成的化合物的密度和流动性增加。因此,对这些过程的动态的理解具有很大的理论和实际利益。在本文中,我们执行分子动力学(MD)模拟来研究具有二元尺寸分布的颗粒的填料过程。已经评估了具有不同颗粒总体密度($ P $)以及粒度比($λ$)的样品。五千个非重叠粒子的初始位置分配在一个狭窄的矩形盒中。之后,允许系统在重力下定居于盒子的底部。在模拟中考虑了每个粒子的翻译和旋转运动。为了处理相互作用的粒子,我们同时考虑了接触和远距离内聚力。正常的粘弹性是根据非线性HERTZ模型计算的,而切向力是通过精确的非线性 - 弹簧模型计算的。假设通过分子方法,我们使用Lennard-Jones(LJ)类似电位来考虑远程内聚力。假设具有不同的远程相互作用强度,研究了包装过程。我们对所研究数量的不同数量进行统计计算,包括包装密度,径向分布函数和方向对相关函数。

Studies on random packing of bidispersive particles have shown that such systems can capture the underlying behavior of more complex phenomena found in physics and materials engineering. In industry, bidispersive particles are used to allow the increase of density and fluidity of the formed compounds. The understanding of the dynamics of these processes is therefore of great theoretical and practical interest. In this paper, we perform molecular dynamics (MD) simulations to study the packing process of particles with binary size distribution. Samples with different particle population densities ($p$) as well as particle size ratios ($λ$) have been assessed. The initial positions of five thousand non-overlapping particles are assigned inside a confining rectangular box. After that, the system is allowed to settle under gravity towards the bottom of the box. Both the translational and rotational movements of each particle are considered in the simulations. In order to deal with interacting particles, we take into account both the contact and long-range cohesive forces. The normal viscoelastic force is calculated according to the nonlinear Hertz model, whereas the tangential force is calculated through an accurate nonlinear-spring model. Assuming a molecular approach, we account for the long-range cohesive forces using a Lennard-Jones(LJ)-like potential. The packing processes are studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied including packing density, radial distribution function and orientation pair correlation function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源