论文标题
扭曲的傅立叶分析和伪概率分布
Twisted Fourier analysis and pseudo-probability distributions
论文作者
论文摘要
我们使用傅立叶分析的非交通性概括来定义一类广泛的伪概率表示,其中包括已知的玻色子和离散的Wigner函数。我们表征了对应于相空间变换的量子统一操作组,从而概括了高斯和克利福德操作。作为示例,我们发现了费米子,硬核玻色子和角数系统的Wigner表示。
We use a noncommutative generalization of Fourier analysis to define a broad class of pseudo-probability representations, which includes the known bosonic and discrete Wigner functions. We characterize the groups of quantum unitary operations which correspond to phase-space transformations, generalizing Gaussian and Clifford operations. As examples, we find Wigner representations for fermions, hard-core bosons, and angle-number systems.