论文标题

通过非线性多物理动态系统的机器学习减少键图

Reduced Bond Graph via machine learning for nonlinear multiphysics dynamic systems

论文作者

Hammadi, Youssef, Ryckelynck, David, El-Bakkali, Amin

论文摘要

我们提出了一种旨在减少债券图的机器学习方法。机器学习的输出是一种混合建模,其中包含降低的键图,该键图耦合到一个简单的人工神经网络。提出的耦合使机器学习的知识连续性。在本文中,通过线性校准程序获得神经网络。我们提出了一种包含两个训练步骤的方法。首先,该方法选择保留在还原键图中的原始键图的组件。其次,该方法构建了一个人工神经网络,该神经网络补充了还原的键图。由于机器学习的输出是一个混合模型,而不是仅仅是数据,因此很难在时间上使用通常的反向传播来校准神经网络的重量。因此,在第一次尝试中,通过遵循模型减少方法提出了一个非常简单的神经网络。我们考虑汽车舱热行为的建模。用于训练步骤的数据是通过使用实验设计通过差分代数方程的溶液来获得的。在训练步骤中进行简单的冷却模拟。当使用还原的键图用于模拟WLTP车辆处理程序的驾驶周期时,我们显示了模拟加速,同时保留了输出变量的准确性。原始键图的变量分为一组主要变量,一组辅助变量和一组三级变量。还原的键图包含所有主要变量,但没有第三变量。次要变量通过人工神经网络耦合到主要变量。我们讨论了这种耦合方法的扩展到更复杂的人工神经网络。

We propose a machine learning approach aiming at reducing Bond Graphs. The output of the machine learning is a hybrid modeling that contains a reduced Bond Graph coupled to a simple artificial neural network. The proposed coupling enables knowledge continuity in machine learning. In this paper, a neural network is obtained by a linear calibration procedure. We propose a method that contains two training steps. First, the method selects the components of the original Bond Graph that are kept in the Reduced Bond Graph. Secondly, the method builds an artificial neural network that supplements the reduced Bond Graph. Because the output of the machine learning is a hybrid model, not solely data, it becomes difficult to use a usual Backpropagation Through Time to calibrate the weights of the neural network. So, in a first attempt, a very simple neural network is proposed by following a model reduction approach. We consider the modeling of the automotive cabins thermal behavior. The data used for the training step are obtained via solutions of differential algebraic equations by using a design of experiment. Simple cooling simulations are run during the training step. We show a simulation speed-up when the reduced bond graph is used to simulate the driving cycle of the WLTP vehicles homologation procedure, while preserving accuracy on output variables. The variables of the original Bond Graph are split into a set of primary variables, a set of secondary variables and a set of tertiary variables. The reduced bond graph contains all the primary variables, but none of the tertiary variables. Secondary variables are coupled to primary ones via an artificial neural network. We discuss the extension of this coupling approach to more complex artificial neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源