论文标题

粘弹性流体的无界流动中的共轭传热经过球体

Conjugate heat transfer in the unbounded flow of a viscoelastic fluid past a sphere

论文作者

Pimenta, F., Alves, M. A.

论文摘要

这项工作介绍了简化的PTT流体的共轭传热,该液体经过Stokes制度中无限球的流动($ re = 0.01 $)。假设轴向对称性,没有自然对流和恒定的物理特性,使用有限体积方法在数值上解决了该问题。 The sphere generates heat at a constant and uniform rate, and the analysis is conducted for a range of Deborah ($0 \leq De \leq 100$), Prandtl ($10^0 \leq Pr \leq 10^5$), Brinkman ($0 \leq Br \leq 100$) and conductivity ratios ($0.1 \leq κ\leq 10$), in the presence or absence of thermal contact在固体界面处的电阻。阻力系数显示出$ de $的单调减小,而球体表面上的压力以及在尾流的第一次增加,然后随$ de $降低。观察到测试的两个溶剂粘度比($β$ = 0.1和0.5)的负唤醒,对于更弹性的流体而言,更强烈。在没有粘性耗散的情况下,努塞尔特的平均努塞尔特数量随着$ de $的最初增加而开始减少。在测试的整个条件范围内,观察到相对于等效牛顿流体的热传递增强。当球体的导热率与流体的电导率相关时,球体的温度降低并变得更加均匀,尽管在Nusselt数中观察到很小的变化。界面处的热接触电阻会增加球体的平均温度,而不会显着影响球体内部温度曲线的形状。当考虑粘性耗散时,随着$ br $的增加,在传热过程中观察到重大变化。总体而言,与牛顿液相比,简化的PTT流体可以增强传热,但增加$ de $并不一定会改善热量交换。

This work addresses the conjugate heat transfer of a simplified PTT fluid flowing past an unbounded sphere in the Stokes regime ($Re = 0.01$). The problem is numerically solved with the finite-volume method assuming axial symmetry, absence of natural convection and constant physical properties. The sphere generates heat at a constant and uniform rate, and the analysis is conducted for a range of Deborah ($0 \leq De \leq 100$), Prandtl ($10^0 \leq Pr \leq 10^5$), Brinkman ($0 \leq Br \leq 100$) and conductivity ratios ($0.1 \leq κ\leq 10$), in the presence or absence of thermal contact resistance at the solid-fluid interface. The drag coefficient shows a monotonic decrease with $De$, whereas the stresses on the sphere surface and in the wake first increase and then decrease with $De$. A negative wake was observed for the two solvent viscosity ratios tested ($β$ = 0.1 and 0.5), being more intense for the more elastic fluid. In the absence of viscous dissipation, the average Nusselt number starts to decrease with $De$ after an initial increase. Heat transfer enhancement relative to an equivalent Newtonian fluid was observed for the whole range of conditions tested. The temperature of the sphere decreases and becomes more homogeneous when its thermal conductivity increases in relation to the conductivity of the fluid, although small changes are observed in the Nusselt number. The thermal contact resistance at the interface increases the average temperature of the sphere, without affecting significantly the shape of the temperature profiles inside the sphere. When viscous dissipation is considered, significant changes are observed in the heat transfer process as $Br$ increases. Overall, a simplified PTT fluid can enhance heat transfer compared to a Newtonian fluid, but increasing $De$ does not necessarily improve heat exchange.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源