论文标题
在空间形式的平均曲率流以正常曲率夹住的表面
Surfaces pinched by normal curvature for mean curvature flow in space forms
论文作者
论文摘要
在本文中,我们研究了紧凑型表面的平均曲率流量为$ 4 $维空间形式。我们证明在涉及正常曲率的某些捏合条件下,平均曲率流的收敛定理,这概括了Baker-Nguyen的收敛定理。
In this paper, we investigate the mean curvature flow of compact surfaces in $4$-dimensional space forms. We prove the convergence theorems for the mean curvature flow under certain pinching conditions involving the normal curvature, which generalise Baker-Nguyen's convergence theorem.