论文标题
$ d $二维开放对称排除过程的流体动力限制
Hydrodynamic limit for a $d$-dimensional open symmetric exclusion process
论文作者
论文摘要
在本文中,我们将重点放在带有参数$ m $(sep($ m/2 $))的开放对称排除过程上,该过程允许每个站点$ m $粒子且具有开放边界。我们将最初在Arxiv定理4.12中提出的开放式$(M/2)$的流体动力学限制(1908.02359)中概括了结果。我们证明,$ d- $ dimensional开放的Sep $(m/2)$的密度曲线的流体动力限制解决了$(d+1) - $ dimensional Heator方程,具有某些初始条件和边界条件。
In this paper we focus on the open symmetric exclusion process with parameter $m$ (open SEP($m/2$)), which allows $m$ particles each site and has an open boundary. We generalize the result about hydrodynamic limit for the open SEP$(m/2)$ that was originally raised in Theorem 4.12 of arXiv:1908.02359. We prove that the hydrodynamic limit of the density profile for a $d-$dimensional open SEP$(m/2)$ solves the $(d+1)-$dimensional heat equation with certain initial condition and boundary condition.