论文标题
同型相干映射类小组动作和模块化类别的Hochschild复合物的切除
Homotopy Coherent Mapping Class Group Actions and Excision for Hochschild Complexes of Modular Categories
论文作者
论文摘要
给定任何模块化类别$ \ MATHCAL {C} $在代数关闭的字段$ K $上,我们提取$ \ Mathcal {C} $ - Bimodules的序列$(m_g)_ {g \ geq 0} $。我们表明,$ \ Mathcal {C} $ $ \ Mathcal {c} $的Hochschild链复合物$ ch(\ Mathcal {C}; m_g)$ in $ m_g $中的系数带有一个规范同型相干性投影型的映射组的映射组属属属$ G+g+1 $ $ 1 $ $。 $ \ MATHCAL {C} $的普通Hochschild综合体对应于$ CH(\ Mathcal {C}; M_0)$。 该结果作为以下更全面的拓扑结构的一部分获得:我们构建了对称的单体函数$ \ Mathfrak {f} _ {\ Mathcal {C}}:\ Mathcal {C} \ text { - text { - } - } - } \ mathsf {在$ k $上定义的$ k $的链中的值在对称单体类别上定义,其边界组件在$ \ MATHCAL {C} $中标记为投影对象。函数$ \ mathfrak {f} _ {\ mathcal {c}} $满足了以同型coends表示的切除属性。从这个意义上讲,任何模块化类别都可以自然地上升到具有链复合物值的模块化函子。在Zeroth同源性中,它恢复了Lyubashenko的映射类组表示。 通过在表面上选择标记,即切割系统和某些嵌入式图,我们的结构中的链络合物可以明确计算。为了证明我们,我们替换了由合约的Kan Complex在乐高teichmüller游戏中出现的剪切系统的连接和简单连接的clostoid。
Given any modular category $\mathcal{C}$ over an algebraically closed field $k$, we extract a sequence $(M_g)_{g\geq 0}$ of $\mathcal{C}$-bimodules. We show that the Hochschild chain complex $CH(\mathcal{C};M_g)$ of $\mathcal{C}$ with coefficients in $M_g$ carries a canonical homotopy coherent projective action of the mapping class group of the surface of genus $g+1$. The ordinary Hochschild complex of $\mathcal{C}$ corresponds to $CH(\mathcal{C};M_0)$. This result is obtained as part of the following more comprehensive topological structure: We construct a symmetric monoidal functor $\mathfrak{F}_{\mathcal{C}}:\mathcal{C}\text{-}\mathsf{Surf}^{\mathsf{c}}\to\mathsf{Ch}_k$ with values in chain complexes over $k$ defined on a symmetric monoidal category of surfaces whose boundary components are labeled with projective objects in $\mathcal{C}$. The functor $\mathfrak{F}_{\mathcal{C}}$ satisfies an excision property which is formulated in terms of homotopy coends. In this sense, any modular category gives naturally rise to a modular functor with values in chain complexes. In zeroth homology, it recovers Lyubashenko's mapping class group representations. The chain complexes in our construction are explicitly computable by choosing a marking on the surface, i.e. a cut system and a certain embedded graph. For our proof, we replace the connected and simply connected groupoid of cut systems that appears in the Lego-Teichmüller game by a contractible Kan complex.