论文标题
固定矩阵的对角线化
Diagonalization of Fix-Mahonian Matrices
论文作者
论文摘要
考虑所有由下降,反转和固定点多项式加权加权的置换的总和的定期表示。我们计算该矩阵的元素及其元素的多重性。请注意,这些多项式统计数据允许将结果应用于几个排列统计数据,例如固定点,下降,反转和主要索引的数量。
Consider the regular representation of the sum over all permutations weighted by the sum of their descent, inversion, and fixed point multinomials. We compute the spectrum and the multiplicities of its elements of that matrix. Note that those multinomial statistics allow to apply the result on several permutation statistics like the number of fixed points, of descents, of inversions, and the major index at the same time.