论文标题
Moravcsik的定理,对重新审视的一组极化可观察到
Moravcsik's theorem on complete sets of polarization observables reexamined
论文作者
论文摘要
我们回顾了Moravcsik的定理,介绍了从两极分化的独特提取幅度的独特提取,该幅度最初于1985年发表。该证明是以一种更正式和更详细的方式编写的(重新),并且为奇偶数量的特殊案例纠正了该定理(本案例的特殊情况)(这种情况是在原始的原始出版物中都在不正确的情况下进行了错误的处理)。 Moravcsik的定理,以修改形式,可以原则上应用于提取任意数量的$ n $ helicity振幅的。然后将唯一定理应用于涉及旋转颗粒的辐射反应。最基本的例子是浦核散射($ n = 2 $),第一个非平凡的例子是伪级中梅森光增生($ n = 4 $),此处治疗的最具技术上有关的病例由伪科斯卡尔梅森梅森电气产生($ n = 6 $)给出。 Moravcsik定理在电多次生产中的应用会产生新的结果,这首先提供了有关此特定过程完整集的结构和内容的见解。比较了各种反应的唯一性 - 试图识别一般模式,这些模式在定理的应用下出现。
We revisit Moravcsik's theorem on the unique extraction of amplitudes from polarization observables, which has been originally published in 1985. The proof is (re-) written in a more formal and detailed way and the theorem is corrected for the special case of an odd number of amplitudes (this case was treated incorrectly in the original publication). Moravcsik's theorem, in the modified form, can be applied in principle to the extraction of an arbitrary number of $N$ helicity amplitudes. The uniqueness theorem is then applied to hadronic reactions involving particles with spin. The most basic example is Pion-Nucleon scattering ($N=2$), the first non-trivial example is pseudoscalar meson photoproduction ($N=4$) and the most technically involved case treated here is given by pseudoscalar meson electroproduction ($N=6$). The application of Moravcsik's theorem to electroproduction yields new results, which for the first time provide insights into the structure and content of complete sets for this particular process. The uniqueness-statements for the various reactions are compared and an attempt is made to recognize general patterns, which emerge under the application of the theorem.