论文标题
从太阳中推断出正常模式频率分裂的Lorentz应力的灵敏度内核
Sensitivity kernels for inferring Lorentz stresses from normal-mode frequency splittings in the Sun
论文作者
论文摘要
与标准的球形对称太阳能模型不同,以扰动的形式(例如全局和局部尺度流以及结构性非球面),导致在观察到的太阳能振荡频谱中特征频率的分裂。我们从地球物理文献中普遍的思想中得出了一个普遍的思想,我们设计了一种程序,该程序能够计算对太阳中一般洛伦兹应力场的灵敏度内核的计算。由于任何扰动而引起的模式耦合需要仔细考虑多重组的自我和交叉耦合。调用孤立的多个近似值可以将治疗限制为纯粹的自我耦合,需要较少的计算资源。我们在洛伦兹应力的影响下确定了这种孤立的多重组的存在。当前,太阳能传教士允许通过“ $ a $ - 系数”和跨光谱相关信号进行精确测量多重耦合,从而可以估算“结构系数”。我们证明了自耦合($ a $ - 系数)和交叉耦合(结构系数)的前进问题。在此过程中,我们绘制了自耦合内核,并估算了$ $ a $ e效率,这是由深螺旋和表面二色轴对称场的组合产生的。我们还计算了任意一般磁场(真实和电磁阀)的结构系数,并绘制相应的“分裂函数”,这是一种可视化3D内部扰动下多重分裂的便利方法。本文讨论的结果铺平了正式构成反问题的方式,并推断太阳内部磁场。
Departures from standard spherically symmetric solar models, in the form of perturbations such as global and local-scale flows and structural asphericities, result in the splitting of eigenfrequencies in the observed spectrum of solar oscillations. Drawing from prevalent ideas in normal-mode coupling theory in geophysical literature, we devise a procedure that enables the computation of sensitivity kernels for general Lorentz stress fields in the Sun. Mode coupling due to any perturbation requires careful consideration of self- and cross-coupling of multiplets. Invoking the isolated-multiplet approximation allows for limiting the treatment to purely self-coupling, requiring significantly less computational resources. We identify the presence of such isolated multiplets under the effect of Lorentz stresses in the Sun. Currently, solar missions allow precise measurements of self-coupling of multiplets via "$a$-coefficients" and the cross-spectral correlation signal which enables the estimation of the "structure coefficients". We demonstrate the forward problem for both self-coupling ($a$-coefficients) and cross-coupling (structure coefficients). In doing so, we plot the self-coupling kernels and estimate $a$-coefficients arising from a combination of deep-toroidal and surface-dipolar axisymmetric fields. We also compute the structure coefficients for an arbitrary general magnetic field (real and solenoidal) and plot the corresponding "splitting function", a convenient way to visualize the splitting of multiplets under 3D internal perturbations. The results discussed in this paper pave the way to formally pose an inverse problem, and infer solar internal magnetic fields.